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The stability to three-dimensional disturbances of three classical steady vortex 
configurations in an incompressible inviscid fluid is studied in the limit of small vortex 
cross-sectional area and long axial disturbance wavelength. The configurations 
examined are the single infinite vortex row, the Karman vortex street of staggered 
vortices and the symmetric vortex street. It is shown that the single row is most 
unstable to a two-dimensional disturbance, while the Karman vortex street is most 
unstable to a three-dimensional disturbance over a significant range of street spacing 
ratios. The symmetric vortex street is found to  be most unstable to three-dimensional 
or two-dimensional symmetric disturbances depending on the spacing ratio of the 
street. Short remarks are made concerning the relevance of the calculations to the 
observed instabilities in free shear layer, wake and boundary-layer type flows. 

1. Introduction 
The linear stability to two-dimensional disturbances of a single infinite row of 

corotating line vortices and of the symmetric and staggered double rows of contra- 
rotating vortices in a perfect fluid was first treated by Karman (1911, 1912) and 
Karman & Rubach (1912). Lamb (1932) gives a careful exposition of much of the 
analysis. It is found that all configurations are unstable to  infinitesimal two- 
dimensional disturbances except for a single configuration of the staggered vortex 
street in which the street spacing ratio (the distance between the rows divided by the 
separation of vortices in the same row) is 0-281. I n  particular, the staggered street, 
known as the Karman vortex street, has attracted much attention (Rosenhead 1953; 
Wille 1960). The observations of coherent structures in the turbulent mixing layer 
has stimulated during the last decade much study of the single infinite row. 

The subject of vortex interaction and stability is currently of great interest and 
the correct interpretation of vortex stability calculations with respect to experi- 
mental data is uncertain (Saffman 1981). An understanding of the linear stability 
of the above-mentioned vortex configurations in an inviscid fluid to  not only two- 
dimensional disturbances but also three-dimensional disturbances, including the 
effects of significant finite vortex cross-sectional area, would be of much value in 
interpreting the observed phenomena in real flows, and we propose in this paper to 
document quantitative results for the three-dimensional linear stability of the single 
row of vortices, the Karman vortex street and the symmetric double row of vortices. 
The results will be limited, however, in the present work to the case of large vortex 
separation and long-axial-wavelength disturbances where the distance between the 
vortices and the wavelength of the three-dimensional motion is referred to the radius 
of the cores. The evolution of the arrays to three-dimensional disturbances of 
arbitrary size can then be analysed using the Biot-Savart law to compute the induced 
motion of the vortices and the cutoff approximation to compute the self-induced 
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velocity of the individual vortices. The behaviour of infinitesimal disturbances is 
obtained by linearizing the equations of motions about the steady state and then 
Fourier analysing in both the vortex axial direction and the row direction to reduce 
the linear stability equations to a finite system. The configuration is unstable to 
disturbances of a given axial and row wavelength if there exist exponentially growing 
solutions, and stable (that is, neutrally stable) if there exist only oscillatory solutions 
to the reduced system. It should be noted that the wavelength in the row direction 
need not be an integral multiple of the vortex separation, which is the spatial period 
of the undisturbed array. 

Schlayer (1928) and Rosenhead (1930) have discussed the stability of the Karman 
vortex street to three-dimensional disturbances in this limit. Schlayer formulates the 
problem coqpletely, but only gives qualitative results. Rosenhead’s treatment is 
incomplete as it neglects the influence of transverse disturbance wavelength except 
for the stabilizing effect of the self-induction of a single vortex. Also, both authors 
introduce the cutoff approximation as an ad hoc assumption (there is, incidentally, 
no discussion of three-dimensional vortex stability in Lamb (1932)). Moreover, the 
complexity of the algebraic expressions and the labour required to evaluate them by 
hand limited the results to a few cases. One of our purposes here is to give further 
data for this flow. Formally consistent asymptotic expansions have now been given 
to justify the cutoff approximation and find the higher-order corrections (Moore & 
Saffman 1972) and the stability to three-dimensional disturbances of several other 
vortex configurations have been documented in the literature. Widnall (1975) and 
Saffman & Baker (1979) have reviewed much of this work. In  addition to the work 
of Schlayer and Rosenhead on rectilinear vortex configurations, Gopal (1963) and 
Crow (1970) studied the case of a pair of contrarotating vortices, and Jimenez (1975) 
examined the corotating pair. 

Although the effects of finite area are beyond the scope of the present work, it is 
perhaps appropriate to mention what has been achieved in this connection. With 
regards to the effect of vortex separations comparable to the size of the vortices, 
Saffman & Szeto (1981) have shown there is little effect on the two-dimensional 
stability of a single row. On the other hand Christiansen & Zabusky (1973) give 
suggestive numerical evidence and Saffman & Schatzman (19824 show from linear 
stability calculations that giving the vortices finite area in a Karman vortex street 
can stabilize the vortices to two-dimensional disturbances. 

For disturbances with axial wavelength comparable to the diameter of the vortex 
it has been shown that a rectilinear vortex may become unstable (Widnall, Bliss & 
Tsai 1974; Widnall 1975; Moore & Saffman 1975). This parametric instability may 
occur when the vortex is subject to a straining field if it  happens that the frequencies 
of two normal modes coincide in such a way as to allow a standing wave to occur; 
the external field may then cause the vortex to become unstable. A similar instability 
is allowed by the cutoff theory outside its range of validity, and, although we shall 
a t  times show this instability in subsequent stability diagrams, it is to be understood 
that the axial wavenumber, width and magnitude of the instability are to be taken 
only in a qualitative sense as an indication of the phenomena, as the instability may 
or may not be real depending on the internal structure of the vortex filament. A case 
where the cutoff prediction is spurious is given by Moore & Saffman (1974). 

Pierrehumbert (1980) (see also Pierrehumbert & Widnall 1982) has examined the 
stability to three-dimensional disturbances of the Stuart (1967) solution of the Euler 
equations, which describes a single infinite row of continuous vortices, the flow 
varying from a hyperbolic-tangent shear-layer profile to a single infinite row of point 



Three-dimensional stability of vortex arrays 41 3 

vortices according to the value of a single parameter. Two types of disturbances are 
considered, one in which all the vortices are deformed in exactly the same manner 
and one in which the wavelength of the disturbance in the row direction is twice the 
separation, and neighbouring vortices move in an antisymmetrical way. The former 
gives rise to the short-axial-wavelength parametric instability, which cannot be 
calculated properly by the Biot-Savart induction law. The latter agrees reasonably 
in the long-wavelength limit with the calculations of the present work. 

Our calculations of the long-wavelength instability of well-separated vortex arrays 
are restricted to the cooperative modes of instability, which depend primarily on the 
mutual induction. It is expected that the results will, however, be at least quali- 
tatively informative for arrays containing vortices of significant area and determine 
when two-dimensional or three-dimensional disturbances are likely to be the more 
important. Also, the parametric dependence of stability characteristics relative to 
arbitrary row-wise wavelength is easily determined; that is, there is no restriction 
on the allowed subharmonic disturbance. The mathematical formulation of the 
problem is given in $2. The results for the single row are described in $3, the results 
for the Karman vortex street are contained in $4, and $5 describes the case of the 
symmetrical double row. A summary and comparison of the three cases is given in 
§ 6. 

2. Analysis 
Our analysis, which leads up to a finite-dimensional eigenvalue problem, follows 

in the spirit of the previous work of Crow (1970) and Lamb (1932). We give details 
for the symmetric double row since the results for the single row and staggered double 
row follow immediately. The symmetric double row consists of two straight rows of 
vortices with the axis of each vortex aligned with the k- or z-direction. The rows are 
aligned in the i- or x-direction. The first row is assumed to lie in the plane y = 0, with 
each vortex having circulation r. The second row lies in the plane y = - h, with each 
vortex having circulation -r. The vortices in each row are separated by a distance 
1. See figure 1 for a sketch of all configurations. A parametric representation of the 
position of each element of each vortex filament is given by 

R m  = (mi+ ~t+~,(~,,t))i+yrn(prn,t)j+fprn+~rn(prn,t))k, (2.1) 

R, = (nl+ u t + x , ( p , , t ) ) i + ( - h + ~ , ( p , , t ) ) j + ( p , + z , ( p , , t ) ) k ,  (2.2) 

where the subscript m denotes a vortex on the first row and n a vortex on the second 
row and these subscripts range over all integral values. The Lagrangian variable p 
takes on values in - 00 < p < + 00. U denotes the induced velocity of the undisturbed 
vortex street. For a vortex m on the first row the velocity field is given by 

where the summation is over all integral values of p and q. We take as a convention 
that summation in the dummy variable p refers to contributions from vortices on 
the first row, and for contributions from the second row we sum in the variable q. 
The symbol [cIp-, indicates that a cutoff length c is implemented on each side of the 
singularity in the integrand for p = m. The equations of motion are then 
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FIGURE 1. Steady vortex configurations (two-dimensional (z, y)-plane cross-section) : ( a )  symmetric 
double row; ( b )  staggered double row or Karman vortex street; ( c )  single row. 

where U,(R,) = u, i +  w, j + wmk. For points on the lower row similar equations 
are obtained. The equations are linearized to first order in axlap, 211, x / h  for all x 
on both the first and second rows, and similarly for each y and z .  Upon doing this, 
zeroth-order terms are satisfied identically. An infinite-dimensional autonomous 
linear system in x,, ym and z,, and x,, y, and z ,  results. Now setting 

we specify a sinusoidal disturbance of wavenumber k = 2n/h in the axial or spanwise 
direction at  each vortex position on both the first and second rows. A general 
disturbance could be represented by a Fourier superposition of solutions. The analysis 
is somewhat involved but straightforward, and the following equations for points on 
the first row are obtained: 
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where 

( 2 . 9 ~ )  

The functions x and + are Crow’s first and second mutual-induction functions 
respectively and w is his self-induction function. KO, K,  and Ci are modified Bessel 
functions of the second kind and the integral cosine function respectively. It is easily 
shown that both x and $ have a value of 1.0 a t  5 = 0-0. The functions go to zero 
exponentially for large arguments and are essentially negligible for greater than 5.0. 
The axial wavenumber k is assumed from henceforth to be non-negative to avoid 
constant repetition of absolute-value signs. The subscripts on $ and x indicate that 
the function arguments are 11,,1 k and L,, k for subscripts p and q respectively, 
where l,, = (p -m)  1 and Lim = l;,+h2, with l,, = (q -m) l .  The equations have 
been put into a form such that in the limit k + 0 the stability equations of Lamb 
for the two-dimensional case are obtained. 

The cutoff length c is chosen from the formula (Moore & Saffman 1972) 

(2.10) 

where v represents the distribution of swirl velocity in the core and we have assumed 
no axial velocity in the core. For uniform vorticity f = 1, and all results presented 
in this paper have assumed f = 1 .  Since the asymptotic theory using the cutoff method 
is accurate only to O(ka)2,  the function w is replaced by the leading-order terms giving 

(2.11) 

where y = 0.5772. . . is Euler’s constant. 
It may now be noted that the 9- and &equations decouple from the &-equations 

and that for considerations of stability i t  is sufficient to work with only the coupled 
set. The rest of the analysis follows precisely as given in Lamb for these modified 
equations. We now specify disturbances on the first row by im = aleim@, and 
9, = b, eim@, and for disturbances on the second row by 9% = a2 ein@, and 9, = b, e in@,  
where -n < Q1 < n. The stability equations for the first row are 

. ( A  - r )  b, - Ba2 - Cb,, (2.12a) 

(?a, + Bb,, (2.12 b )  
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, 1 - $( Ipl k l )  e i P @  

P P2 

q2 - K -: (q2 + K2), 
A = X  

co $(pkl)cosp$ n2 +- 
p=l Pa sinh2 K ~ T '  

- 1  - 3 n - 2  2 z (2 .13)  

where K = h/l  is the ratio of the distance h between the rows and the separation I 
of vortices on a single row. A, 8, and 0 are found by interchanging the symbols x 
and $ in the above equations. 

The corresponding equations for the lower row are found by reversing the signs 
of r and K and interchanging the subscripts 1 and 2. Thus 

( A  - 7) b, - Ba, + Cb,, 

+ Oal + Bb,. 

( 2 . 1 6 ~ )  

(2.16 b )  

We now look a t  symmetric and antisymmetric modes with respect to a plane midway 
between the two parallel rows, 

as = al+a,, b, = b,-b, ,  a A  = al-a,, b, = b,+b, .  (2.17) 

Introducing disturbances proportional to eut , the eigenvalue problem reduces to 

Bla,  = - B a s - ( A - C - y ) b , ,  (2 .18a)  

Bibs = -(A+c+7)as --Bbs; (2.18 b )  

B1a, = + B U A -  ( A  + c-7) bA, ( 2 . 1 8 ~ )  

BlbA = - ( A - c + , ) a A  + B b A ;  (2 .18d)  

where Bl = 2n12a/T is the non-dimensional growth rate based on constant 1 and r. 
This transformation reduces the determination of linear stability or instability to a 
question of the character of roots of quadratic equations. Since B = B ,  the solution 
of the equations is especially simple so that we have 

8: = - B + [ ( A - C - v )  (A+c+7)]4, ( 2 . 1 9 ~ )  

(it' = +B+_I(A+c--)(A-e+r)]t. (2.19b) 

Since B is purely imaginary the stability of the configuration is determined only by 
the sign of the products in the square-root term. If the product is negative the system 
is neutrally stable, if positive the system is unstable. 

The variable q5 must be allowed to vary continuously in the range -n ,< $ < n. 
However, since negative values of q5 simply give the complex-conjugate eigenfunctions 
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of those with q5 positive, i t  is sufficient to  consider values of q5 only in the range 
0 d qi d n. Now $11 may be thought of as the wavenumber of the disturbance in the 
row direction, so that 2nllqi = ,ul is the wavelength in the row direction with 
2 < ,u < 03. Thus ,u = 2-0 implies a repetition every two vortices, ,u = 4.0 a repetition 
every four vortices, and ,u = 03 implies that  all the vortices on a single row when 
viewed in an (x,y)-plane cross-section are displaced in the same direction. It is 
important to  realize that ,u = 00 implies a simple translation of the whole row as a 
unit only for the case kl = 0.0. That is, the magnitude and sign of the two-dimensional 
displacements in a given (x,y)-plane will vary with z for finite values of the axial 
wavelength A. 

I n  the symmetric mode a, = a, and b,  = - b,. This mode can therefore be thought 
of as a row of vortices near a wall with the second row representing an image system. 
I n  the antisymmetric mode a, = - a, and b, = b,, so that one may visualize in a given 
(x, y)-plane each pair of vortices (separated by h in the y-direction) being displaced 
in opposite x-directions about their common (y, 2)-plane but equally displaced in the 
y-direction. 

The subscript 1 on 8f and 8% refers to the way B is non-dimensionalized. A subscript 
1 means we base B on constant 1 and r. Changes in K = h/l then refer to  changes in 
h alone. It is equally feasible to non-dimensionalize on h and r so that changes in 
K refer to changes in 1. I n  this case K = 0 corresponds to an isolated pair of translating 
vortices. It is clear that  8, = K V ~ ,  where in the computation of 8, we replace kl by 
kh/K. 

We now pass easily to the case of the staggered double row of vortices or the 
Karman vortex street. The disturbances on the first row are given by gm = aleim$, 
and 9, = b,eim$, and on the second row by 9, = a2ei(ne)$, and gm = b2ei(n+i)$, where 
- m <  qi < 7r. The corresponding stability equations are exactly the same if we 
replace q by q + i  in (2.13)-(2.15). Thus 

, l-@(JpJ kl)eiP$ ( q + i ) , - ~ ~  
A = C  p2 -z 

P q ( ( q + i ) 2 + K 2 ) 2  

(2.20) 

03 

= 2 i  c (' +') [x( ( (q  + a), + K'); k l )  + @( ( (q  +t)2 + ~ ' ) i  k l ) ]  sin (q  + +) q5, (2.21) 
q = o  ( (q+ i )2++2)2  

with A, B and 6 again found by interchanging the symbols ~ and x. As before it 
is sufficient for stability considerations to consider q5 in the range 0 < q5 < n or 
2 d ,u ,< co for both the symmetric and antisymmetric modes. The geometrical 
meaning of each mode can be clarified by assuming a very long row-wise disturbance 
wavelength. The symmetric mode in any (x, y) cross-section would then appear only 
as a change in the y-dimension of the street without changing the relative row-wise 
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alignment of the street. The antisymmetric mode on the other hand would appear 
in the same section to  cause a relative change in the spacing in the x-direction between 
vortices on the first and second rows of the street. 

The case ofthe single row of vortices is easily obtained from the above by dropping 
all quantities relating to the second row. Thus 

so that 

27d2 da, 
r dt - - ( A  -7) b,, (2.23 a )  

(2.23b) 

(2.24a) 

(2.24 b )  

It is again sufficient to consider only the range 2 < p < co for considerations of 
stability. 

Sections 3-6 will be devoted to a description of the stability diagrams computed 
from the above formula. When the growth rate is based on constant 1 i t  is convenient 
to introduce the notation uE + iPE = 28, /n2.  Then uE represents the real part of the 
eigenvalue with this growth rate non-dimensionalized on constant 1 and r. The factor 
2/n2 normalizes the maximum growth rate of the single infinite row to the value 1.  
We define ah in a similar manner to the real part of ah. 

3. Single row 
The single infinite row of corotating vortices is, of course, always unstable to pure 

two-dimensional disturbances. The most unstable mode is the pairing instability 
whereby adjacent vortices are displaced in opposite directions. This mode corresponds 
to p = 2.0. As ,u + co, this maximum growth rate decreases to zero. Figure 2 shows 
that as llh = k1/2n increases, the growth rates fall rapidly to zero. This is due to the 
self-induced straining field counteracting the induced strain of the other vortices. As 
llh increases, the functions x and @ fall quickly to zero, so that mutual-interaction 
effects are soon negligible and only the zeroth-order strain from the other vortices 
and the self-induced strain contribute to the stability equations. For small axial 
wavelengths, as the self-induced strain goes to zero, the vort8ex becomes unstable to 
the straining field of the other vortices in the row. Figure 2 is for all  = 0.1. This value 
of all  was chosen in order to include the indication of the short-transverse-wavelength 
parametric instability in the diagram. We stress again that the instability shown is 
only representative of a phenomena that occurs only when the internal structure of 
the vortex allows. For smaller vortex area a much larger l/h is required to obtain 
the value ka = 1-44 that is the zero of the self-induction function. The effect of smaller 
all on the long-axial-wavelength instability is to decrease the width of the unstable 
region near llh = 0. No qualitative features are changed. 

The stability diagrams shown are consistent with well-known observed behaviour 
in the mixing layer whereby vortices that form from the Kelvin-Helmholtz instability 
are observed to  undergo a pairing interaction (Roshko 1976). It is seen in the stability 
diagrams that three-dimensional disturbances have a smaller growth rate than the 
pure two-dimensional pairing mode. This may in part account for the continued 
strong two-dimensional character of the mixing layer as it develops through a pairing 
process. 
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I lk  

FIQURE 2. Plot of the growth rate al versus l / A  for various values of ,u and all = 0 1  
in the case of the single row. 

Stable 

K 

FIGURE 3. Contour plot of uf in K and I/h for ,u = 40 and all = 0 1  in the case 
of the staggered double row. 

4. Staggered double row or KSlrmSln vortex street 
The staggered double row of vortices that appears in the wake of many different 

objects over a wide range of Reynolds numbers has long been an enigma to both 
theoreticians and experimenters alike. Karmin, in his original papers, predicted two 
values of the spacing ratio for the staggered vortex street. In his first paper he allowed 
perturbations to only a pair of vortices. The value of the street spacing ratio then 
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FIGURE 4. Contour plot of a: in K and l / h  for y = 4.0 and all  = 0.1 in the case 
of the staggered double row. 

obtained by requiring neutral stability to infinitesimal two-dimensional disturbances 
was cosh K ~ T  = 2/3 or K = 0.365. I n  subsequent papers, by allowing two-dimensional 
perturbations to all of the vortices in the two rows the value of cosh K ~ T  = 2/2 or 
K = 0.281 was obtained. Both of these values will appear in the subsequent invest- 
igation. It is now known of course that the street is unstable to two-dimensional 
finite-amplitude disturbances (Schmieden 1936 ; Kochin 1939 ; Domm 1956). Indeed 
there are questions about the relevance of the stability calculations to  the appearance 
of the street a t  all (Saffman & Schatzman 1982b). 

Upon introducing disturbances in the spanwise or axial direction one finds the 
stability characteristics to depend significantly on the axial wavelength. Figures 3 
and 4 give important features of the stability diagrams for the antisymmetric and 
symmetric modes, respectively. These figures are for p = 40. In  figure 3 a long- 
axial-wavelength instability is always observed at some value of l /h  even though a 
pure two-dimensional mode may be stable. The neutrally stable saddle point moves 
down to the K-axis as ,u -+ 2.0, and the small region of stability below the saddle point 
disappears. The saddle point lies a t  a value K = 0-281 when p = 2-0. For larger values 
of p the saddle point moves toward the lower right-hand corner of the diagram and 
the growth rates to the right of the saddle decrease to zero. On the other hand, as 
p -P 00 , even though strictly two-dimensional modes become neutrally stable, the 
large growth rates for three-dimensional modes to  the left of the saddle point increase 
in magnitude. 

The symmetric mode exhibits much-simpler characteristics. Figure 4 shows the 
growth-rate curves forp = 4.0. Note the region ofneutral stability to long-wavelength 
axial disturbances. For p -+ 2.0 this region decreases to a single point K = 0.281. As 
p --* 03 the stable region grows until for ,u = 00 all long-wavelength axial modes are 
stable. 

In  figure 5 we plot the maximum over l / h  and p of the growth rates as well as the 
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FIGURE 5. Plot of the maximum growth rate UP and the corresponding Z/A and l / p ,  all versus K 

for a l l  = 0 1  in the case of the staggered double row. Also plotted is the short-axial-wavelength 
growth rate (dashed curve). Subscript M denotes maximum. 

values of these parameters at which the maximum occurs. The maximum growth rate 
occurs for the antisymmetric mode and p = 00 for K less than a value between 0.3 
and 0.4. For larger values of K the dominant instability is a two-dimensional mode 
with p = 2.0. The precise value of K at which the characteristics of the dominant mode 
change is dependent on al l  and increases slightly with decreasing all. 

As llh increases, the functions x and $ rapidly approach zero, so that  the effect 
of the displacement of the other vortices has little to do with the stability of the given 
vortex filament. The growth rate then becomes essentially a function of K and the 
self-induction function. At a value of llh such that the parametric instability is 
possible the magnitude of this instability is a function of K .  The point of zero growth 
rate, as can be seen from (2.20) and (2.22), approaches the value of K given by 
cosh K ~ T  = 1 / 3  for large llh. This is essentially the value of the spacing ratio a t  which 
the straining field due only to the zeroth-order fields of the other vortices is negligible. 
As mentioned before, this is the value of the spacing ratio first proposed by Karman 
(191 1) .  This is also the value at which two-dimensional vortices of small size change 
from being elongated in the transverse direction to being longer in the streamwise 
direction (Saffman & Schatzman 1981). The growth rate for the short-wavelength 
instability, computed by neglecting exponentially small terms in llh, is shown by the 
dotted line in figure 5.  

As in the case of the single row, smaller values of all have the effect of decreasing 
the width in llh of the unstable region near llh = 0, and also of increasing the 
magnitude of the p = 00 growth rate. The short-wavelength instabilities also occur 
a t  correspondingly larger values of 1/A.  It is interesting to note that both long- and 
short-axial-wavelength modes have maximum growth rates that are smallest for 
values of K from about 0 3  to 0.4. For K less than about 0 3 ,  the dominant 
long-wavelength axial mode is a three-dimensional mode with p = 00. Whether this 
mode or the short-wavelength mode has a larger growth rate depends on the precise 
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2.5 

FIGURE 6. Plot of a: versus h/A for various values of K with ,u = 2.0 and a /h  = 0 1  in the case 
of the symmetric double row. 

value of a/ l .  For very small a l l  the long-wavelength mode is dominant. When K is 
greater than about 04, the two-dimensional y = 20 instability is dominant. 

The effect of significant vortex area has an as yet undetermined effect on the 
three-dimensional stability of the vortex street. As mentioned earlier, larger vortex 
area will stabilize the street to two-dimensional disturbances for a small interval 
about K = 0.281. Whether significant finite area will reduce and/or eliminate the 
instability for a three-dimensional disturbance is unknown but seems possible. There 
is no doubt however that the third dimension is of great importance in discussing 
the stability of the KBrmin vortex street and must be a part of any consistent theory 
for its existence and evolution. 

5. Symmetric vortex street 
It is instructive to  view the case of the symmetric vortex street in terms of constant 

h. Thus changes in K refer to  changes in 1 and we now plot Re8, = ah. For K = 0.0 
we find the results of Gopal and Crow for a pair of corotating line vortices. Figure 
6 gives growth rate diagrams for the symmetric mode. It is observed that for long 
axial wavelengths the configuration is always unstable. For values of K less than one, 
the most unstable mode has a finite wavelength in the axial direction. For larger K ,  

a pure two-dimensional mode is most unstable. It is seen that the most-unstable 
modes are a t  y = 2.0, i.e. the pairing mode. As K increases the magnitude of the growth 
rate also grows as the induced velocity of more vortices becomes effective. However, 
for y near co the growth rate no longer increases but rather decreases with increasing 
K as seen in figure 7 .  For short axial wavelengths, no corresponding region of relatively 
small growth rate such as in the case of the KBrman vortex street is found. This is 
easily seen from the stability equations for large kl.  

For the antisymmetric mode, figure 8 shows that the most-unstable configuration 
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FIGURE 7 .  Plot of a: versus h/h for various values of K with ,u = co and a /h  = 0.1 in the case of 
the symmetric double row. 
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FIGURE 8. Plot of a? versus h/h for various values of K with ,u = 20 and a / h  = 0 1  in the case 
of the symmetric double row. 

is always the two-dimensional pairing mode for long axial wavelengths. Larger ,LA only 
serves to decrease the growth rates until for ,LA = 03 the instability is reduced to zero 
for any value of K .  The short-axial-wavelength instability has the same characteristics 
as the symmetric mode. 

Figure 9 gives the growth rates for the symmetric mode if we base the growth rate 
on I instead of h. In  this case we cannot allow K to become too small as the growth 
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FIGURE 10. Plot of a? versus 1 /A  for various values of K with ,u = 2.0 and all  = 0 1  in the case 
of the symmetric double row. 

rates are based on 1 and become infinite as h/ l  goes to zero. The three-dimensional 
,LA = 2.0 mode is most unstable. It is only for larger values of K that the dominant 
instability approaches a pure two-dimensional mode. Increasing the wavelength in 
the row direction serves only to decrease the magnitude of the growth rate, and in 
general, except for very long axial wavelengths, this decrease is slight. 

For the antisymmetric mode, figure 10 indicates that  the long-axial-wavelength 
instability is present but not as strong as the symmetric-mode instability. It is seen 
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FIGURE 11. Plot of maximum a; for the staggered double row and maximum a! for the symmetric 
double row versus K for all = 01. Maximum is over long-axial-wavelength region only. Also plotted 
are the values of Z/A and 1/p at which the maximum occurs. Solid lines refer to the staggered double 
row and dotted lines to the symmetric double row. Subscript M denotes maximum. 

that  a change in K has a minor effect and that the characteristics of the long- 
axial-wavelength instability are very much like the single vortex row. The dominant 
growth rate is for a two-dimensional, pairing instability. 

For both the symmetric and antisymmetric modes the short-axial-wavelength 
instability is always present and the growth rate increases monotonically with 
decreasing K .  In  the case of the symmetric mode for al l  = 0-1 and K small, the long- 
and short-axial-wavelength growth-rate curves merge to give a bimodal curve such 
as seen in figure 9. 

The symmetric mode models the effect of a wall on a single row of vortices as the 
second row represents an image system of vortices. It is clear from the figures that 
the symmetric mode is always unstable. Not only are two-dimensional disturbances 
unstable, but in general, for a given K ,  there is a three-dimensional disturbance that 
has a larger growth rate. Moreover, the row-wise wavelength for the maximum 
instability is the p = 2.0 or pairing-type instability. This suggests that, provided a 
real flow may be modelled initially by a system of vortices of the type considered, 
one would expect a strong three-dimensional instability to develop. 

6. Relative instability of the configurations 
It is now of interest to compare the magnitudes of the maximum growth rates for 

the three different configurations over various values of K for the long-wavelength 
instability. We consider only the symmetric mode for the symmetric double row, but 
both the symmetric and antisymmetric mode for the staggered double row. I n  the 
case of the staggered double row the maximum always occurs for the antisymmetric 
mode although when p = 2-0 this maximum is also attained for the symmetric mode. 

Figure 11 shows the maximum growth rates for the staggered and symmetric 
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double rows, as well as the values of Elh and l / p  at which the maxima occur. The 
single row corresponds to the K -P co limit, and we see that the y = 2.0, two- 
dimensional, pairing instability is the dominant instability. The most obvious feature 
of the graphs is that the growth rate of the symmetric double row is always the largest 
of the three, while except for a region near K = 0 the staggered double row has the 
smallest growth rate. The symmetric double row is most unstable always for the 
y = 2.0 mode, with the corresponding value of h decreasing with decreasing K .  On 
the other hand, the staggered double row is most unstable a t  the values y = 2-0 and 
Z/h = 0 for all K greater than about 0-3-04. For smaller values of K the most-unstable 
mode switches to a y = co mode with llh of the maximum increasing slightly as K 

decreases. 
The dependence of the diagram on all is very weak. A smaller value of all has the 

effect of increasing the magnitude of the three-dimensional mode for the staggered 
double row as well as the value of K at which the two-dimensional mode becomes 
dominant. The value of llh for a dominant three-dimensional mode decreases with 
decreasing all for both array configurations. 

These results indicate that the fastest-growing symmetric disturbances to the 
symmetric double row, which is a model for the boundary layer, are three-dimensional, 
and have larger growth rates than those of the staggered double row and the single 
row. These configurations are models for the wake and the mixing layer respectively. 
The mixing-layer model indicates maximum instability for a two-dimensional pairing 
mode. The wake model, on the other hand, indicates that  the wake is most unstable 
to a three-dimensional disturbance for small values of the street spacing ratio, while 
for larger values of the spacing ratio a two-dimensional pairing mode is most unstable. 
The third dimension is thus seen to be a significant factor in discussing the stability 
of configurations of finite-area vortices and ought not to be neglected when discussing 
the stability of real two-dimensional flows that may be modelled by inviscid vortex 
filaments. 

This work was supported by NASA Lewis Research Center (NAG 3-179) and the 
Department of Energy (Office of Basic Energy Sciences). 
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